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ABSTRACT: A mesoscale finite element model is presented for simulating the failure behavior of E-glass/epoxy angle-ply laminates under 

tensile loading. The effective laminate properties are determined from the properties of ply constituents, i.e. fiber and matrix by using 

numerical homogenization technique. Two different interfiber failure mechanisms leading to matrix cracking are reproduced in the 

simulations by using appropriate constitutive equations. The predictions from this model are compared with experimental data available in 

the literature, and are found to be in good agreement. 
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1. Introduction 

The main advantage of micromechanical and 

mesomechanical approaches for studying damage 

mechanisms in composite laminates in regard to 

macroscopic analysis is that they can accurately reproduce 

the initiation and evolution of damage because the 

individual constituents of the ply such as fiber, matrix and 

the interface between them are explicitly included in the 

models. The mesomechanical approach is based on an 

assumption that the structure of the whole laminate can be 

idealized at the ply scale as a periodic array of repeated unit 

cells [1,2]. 

 

2. Mesoscale finite element model 

As shown in Fig.1, a unit cell of an angle-ply laminate 

consists of three rhombohedrons which represent three 

successive plies with various fiber orientations. The 

structure of an ± angle–ply laminate can be viewed at the 

ply scale in the skew coordinate system (x1
s
–x2

s
–x3

s
) as 

a periodical array of plies containing a periodic subarray of 

fibers. Six different ply orientations  = 15
o
, 30

o
, 45

o
, 55

o
, 

60
o
 and 75

o
 are considered. 

 

 
Fig. 1. Geometry of a rhombohedral unit cell 

 

Periodic deformation of the rhombohedral unit cell is 

controlled by macroscopic strains by using the following 

boundary conditions [3] 

 ui= ijxj+ui
p
  (1) 

where ij are the components of the applied strain in the 

skew coordinate system. The components of macroscopic 

stress corresponding to the applied strain can be calculated 

from 

 𝜎𝑖𝑗 =
1

𝑉
∫ 𝜎𝑖𝑗𝑉

d𝑉  (2) 

where V is the volume of the rhombohedral unit cell. 

The plastic deformation of polymeric materials is highly 

sensitive to the hydrostatic pressure and plastic flow of 

these materials can exhibit plastic dilatancy. To address this 

requirement, the Drucker–Prager plasticity model [4], 

which incorporates the linear dependence on the hydrostatic 

stress, is used. In terms of the first invariant of stress I1 and 

the second invariant of the deviatoric part of stress J2, the 

yield function is given as 

 f = (µ I1 / 3)+ sqrt(J2) – k , (3) (4) 

where µ is the pressure sensitivity factor, k is the flow stress 

of the material under pure shear.  
For the fiber/matrix interface failure, a cohesive zone 

model is employed, in which the constitutive equations of 

the interface relate the normal n and tangential t cohesive 

tractions to the normal un and tangential ut displacement 

jumps and a scalar damage variable d, through [5] 

 𝜎𝑛 = 𝑘𝑛𝑢𝑛(1 − 𝑑), 𝜏𝑡 = 𝑘𝑡𝑢𝑡(1 − 𝑑), (4) 

where kn , kt are initial contact stiffnesses in the normal and 

tangential direction, respectively. The scalar damage 

variable d represents the loss of stiffness and it is a function 

of both displacement jumps. To define the completion of 

fracture in the cohesive zone model, a linear energy 

criterion is used [5] 

 (Gn / Gn
c
) + (Gt / Gt

c
) = 1  (5) 

where Gn, Gt denote energy release rates for mode I fracture 

and mode II fracture, respectively and Gn
c
 and Gt

c
 

correspond to the interfacial fracture energies. 

 

3. Results 

In order to identify the failure mechanism of angle-ply 

laminates under tensile loading along x2, an analysis of the 

local stresses in the unit cell models for different ply 

orientations is performed. For this purpose, it is assumed 

that the initiation of cracks in the matrix occurs if the 

maximum shear stress in the matrix or the first principal 

stress in the matrix goes beyond the corresponding ultimate 

strengths of the matrix 

 max ≥ Sm,   or   σ1 ≥ Ym.  (6) 

Fig. 2 shows distributions of the equivalent plastic strain 
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in the ±45 angle-ply laminate for critical loads. In the case 

of the imperfect interface, the critical load corresponds to 

a limit beyond which the fiber/matrix interface cracks are 

fully opened (y
c
 = 0.01). In turn, in the case of the perfect 

interface, it corresponds to a limit beyond which the shear 

strength of the matrix is attained (y
c
 = 0.1185). The most 

intense plastic deformation in the matrix is localized in 

shear bands which develop along planes containing the 

fiber direction. Thus, both models predict that cracking of 

the matrix takes place along the fiber direction within the 

shear bands. 

 

(a) 

 
(b) 

 
Fig. 2. Contour plots of pl in the ±45

o
 angle-ply laminate at 

the critical stage of deformation from the mesoscale model 

with (a) imperfect and (b) perfect fiber/matrix interface 

conditions. 

 

In order to check the reliability of the opening mode of 

fracture, an analysis of the first principal stress σ1 and the 

equivalent plastic strain pl in the matrix is performed by 

using the mesoscale model with the imperfect fiber/matrix 

interface. The distributions of these quantities at the 

fiber/matrix interface are presented in Fig.3 at three 

successive stages of deformation corresponding to the 

beginning of inelastic behavior, the limit load and the 

softening regime. It is interesting to note that the tensile 

stress in the matrix decreases at the softening regime and it 

is below the tensile strength (Ym = 100 MPa). In contrast to 

the tensile stress, the plastic strain in the matrix increases 

constantly with increasing applied strain. This means that 

the condition for crack growth in the matrix under the 

opening mode of fracture cannot be satisfied.  

In order to validate the shearing mode of fracture, an 

analysis of the maximum shear stress max and the 

equivalent plastic strain pl in the matrix is performed by 

using the mesoscale model with the perfect fiber/matrix 

interface. The distributions of these quantities at the 

fiber/matrix interface are presented in Fig.4 at three 

successive stages of deformation. It can be observed that 

both the shear stress max and the plastic strain pl in the 

matrix increase with increasing applied strain. Thus, the 

shear stress in the matrix may go beyond the shear strength 

of the epoxy matrix (Sm = 87 MPa).  

 

 
Fig. 3. Angular distributions of σ1 and pl at the fiber/matrix 

interface at three successive stages of deformation from the 

mesoscale model with imperfect fiber/matrix interface. 

 

 
Fig. 4. Angular distributions of max and pl 

at the fiber/matrix interface at three successive stages 

of deformation from the mesoscale model  

with perfect fiber/matrix interface. 

 

4. Conclusions 

The efficiency of two types of mesoscale models, with 

and without interfacial debonding, was evaluated. The first 

type was found to reproduce well the tensile response of 

angle-ply laminates when plies are oriented at an angle 

larger than 45 degree with respect to the loading direction, 

and in turn, the second type was better suited to it when 

plies are oriented at angle less than 45
 
degree. 
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