
Simulation of instabilities in plasticity and thermo-plasticity

Jerzy Pamin, Anna Stankiewicz, Balbina Wcisło, Adam Wosatko
Institute for Computational Civil Engineering, Cracow University of Technology

e-mail: {J.Pamin,A.Stankiewicz,B.Wcislo,A.Wosatko}@L5.pk.edu.pl

ABSTRACT: The paper presents the concepts of theoretical and numerical analysis of material instabilities and induced localized
deformations, in particular shear bands. Attention is focused on rate-independent plasticity, the analysis starts from small strain isothermal
models and extends to large strain thermo-plasticity. The possible gradient-enhancements of the models are discussed, which result in
prevention of pathological discretization sensitivity of finite element simulations. The importance of couplings is stressed and algorithmic
aspects are addressed.
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1. Introduction

A proper representation of localized strains is a major prob-
lem in the modelling of materials. Localization means that
from a certain stage of the deformation history of a consid-
ered specimen onward, the strains grow only in narrow bands
while unloading takes place in the remaining parts of the spec-
imen [1, 2]. Typical examples of localized deformation are
shear bands in soil, micro-cracking bands in a quasi-brittle
material or necking in a metallic material.
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Figure 1: Consequences of material instabilities [3]

Strain localization occurs when the considered material
suffers from a loss of stability at a certain level of deforma-
tion [4, 5]. When the material tangent stiffness Dijkl becomes
negative definite (softening is encountered) or when a non-
associative plastic flow is considered (resulting in nonsymme-
try of the tangent operator), ellipticity of the governing partial
differential equations can be lost in statics and hyperbolicity
can be lost in dynamics. This loss of well-posedness of the
classical continuum model is indicated by the singularity of
the acoustic tensor Qil. When an eigenvalue of Qil becomes
negative for a softening medium, the waves cannot propagate

(wave speed V is imaginary) and a loading wave does not
transform into a stationary localization wave.

The ill-posedness of the (initial) boundary value problem
results in a loss of uniqueness of the solution. An infinite
number of solutions can be obtained and they can involve dis-
continuities of the deformation gradient (strain localization in
a set of measure zero), cf. Fig. 1. As a result, the numeri-
cal simulations of the phenomenon suffer from convergence
problems and a pathological mesh sensitivity of the results is
observed which is related to the tendency to simulate localiza-
tion in the smallest volume of the material admitted by the dis-
cretization. The description must then be regularized to obtain
proper results. Limiting discussion to rate-independent (invis-
cid) inelastic continuum, either nonlocal integral or gradient-
enhanced formulation can be used.

2. Small strain isothermal plasticity

The first part of the paper contains the discussion of the
above issues, assuming linear kinematic equations and isother-
mal condition. Attention is focused on shear band formation
in geomaterials, modelled with Cam-clay gradient-dependent
plasticity theory implemented in the FEAP package [6]. The
formulation can be extended to take into account the satura-
tion of soil pores with a fluid, leading to a two-phase model
with excess pore pressure as additional fundamental unknown
and the mass continuity equation. The gradient-enhancement
involves the introduction of an internal length parameter and
requires the solution of an additional differential equation gov-
erning the evolution of the plastic strain measure. This ap-
proach gives rise to a coupled problem and two- or three-
field finite element formulation [7]. Fig. 2 compares the shear
bands simulated in a vertical embankment test using classical
and gradient-enhanced description. In the former case mesh-
sensitive results are obtained and strains localize in the small-
est volume possible. In the latter case the shear band width is
set by the length scale associated with the plastic strain gradi-
ents incorporated in the constitutive model.

3. Large strain thermo-plasticity

Large strains often accompany the localized deformation.
They can induce geometrical softening and this way a second
source of instabilities is introduced. The condition of acoustic
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Figure 2: Plane strain simulation of vertical embankment
stability using Cam-clay plasticity model: local (left) vs.
gradient-enhanced (right)

tensor singularity must take into account a proper finite strain
description, cf. [8]. Moreover, plastic processes involve the
self-heating phenomenon and, with the increase of tempera-
ture, thermal softening is often observed in materials in addi-
tion to thermal expansion.

Therefore, focusing on metals or isotropic ductile com-
posites, to examine complex instability phenomena without
the limitation of isothermal processes, a large strain thermo-
plasticity model is adopted. It is based on the multiplicative
decomposition of the deformation gradient into its mechani-
cal (elastic and plastic) and thermal parts. The free energy po-
tential is assumed in a respective additive form [9]. The clas-
sical Huber-Mises yield condition written in terms of Kirch-
hoff stresses is employed, together with associated flow rule,
isotropic strain hardening and thermal softening. The Fourier
law is introduced into the energy balance equation in temper-
ature form, governing nonstationary heat transport.

The two-field model is implemented using the symbolic-
numerical packages AceGen (code generator) and AceFEM
(solution engine) for Wolfram Mathematica and the above-
mentioned thermo-mechanical coupling effects are included.
The important advantage of AceGen is automatic differentia-
tion which enables an easy derivation of the tangent operator,
cf. [10].

Shear banding in a plate in tension and plane strain con-
ditions, caused by linear thermal softening, is examined. It

Figure 3: Influence of heat conduction on shear band in ten-
sile plate simulated with large strain Huber-Mises thermo-
plasticity: adiabatic (top) vs. conductive (bottom)

Figure 4: Influence of gradient-type averaging of relative tem-
perature on adiabatic shear band in tensile plate simulated
with large strain Huber-Mises thermo-plasticity: small inter-
nal length (top) vs. large internal length (bottom)

turns out that, for significant heat conduction, the problem of
thermal softening is regularized by itself, see Fig. 3, but when
one approaches the adiabatic case the results become mesh
sensitive.

Therefore, in the latter case it is proposed to enhance the
model with an additional diffusion-type differential equation
which serves the purpose of relative temperature averaging.
This gradient enhancement of the temperature field proves ef-
fective. As shown in Fig.4, the width of the shear band is
determined by the internal length parameter. Moreover, it is
shown that the incorporation of the two regularizing effects
results in the propagation of the localization band in the spec-
imen.
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