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ABSTRACT: The current paper presents the new method of modeling the composite beam and plate structures using the absolute nodal 

coordinate formulation (ANCF). ANCF allows for modeling dynamics of beam and plate systems using fully spatial kinematic description 

and directly employing the continuum mechanics approach. Those unique features allow for modeling multi-layered structures in 

a straightforward manner, by imposing a simple, linear constraint equations between the layers. This allows for achieving the reliable results 

with limited number of degrees of freedom, due to preprocess elimination of dependent coordinates. However, it should be pointed out, that 

described technique should be used with care as not all of the possible configurations gives predictable and robust results. 
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1. Introduction 

Absolute nodal coordinate formulation (ANCF) [1] is 

a method for modeling flexible multibody systems 

undergoing large displacements and deformations. The 

ANCF is a nonlinear finite element method that do not 

include any rotational degrees of freedom in order to 

describe finite rotations. Instead of them the gradient 

vectors are used. The ANCF characteristics include the 

constant mass matrix, exact description of the arbitrary 

rigid body motions and the possibility of direct application 

of the constitutive equations in the material models. 

The main objective of the current study is to present the 

ability of modeling composite laminated structures using 

ANCF beam and plate elements connected with linear 

constraint equations. These types of structures are often 

used in practical applications like aerospace, automotive, 

ship vehicles and many others [2].  

 

2. Linear constraint equations 

Using the ANCF description one can easily impose 

a required continuity condition at an arbitrary point on the 

boundary of the adjoining elements. For example, to 

impose 
0C  continuity at the point P on the boundary of 

elements i and j, the following equation must be fulfilled: 

 0rr  P

j

P
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where     eSr
PPP , , for ji, , is the position 

vector of point P at the element  , S  is element   

matrix of shape functions, 
P  and 

P  are the element 

dimensionless coordinates while e  is the vector of the 

element nodal coordinates. When the higher order 

continuity is required at the point P, one can write the 

constraint equations that equates an appropriate gradient 

vectors. All those constraint equations are linear functions 

of the body coordinates and therefore, they might be 

eliminated at the preprocessing stage. 

When the connection without any gaps between two 

elements is required, the Eq. (1) must be ensured at each 

point on the boundary.  

 

Fig. 1. Two-layer composite beam structure 

 

If we consider a body that consists of two planar beam 

elements, like the model depicted in Fig. 1, one can 

guarantee the exact connection by imposing the following 

equations: 
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where A and B are points at both ends of elements boundary 

and   rr ,  for yx,  are gradient vectors of 

the element  . 

In order to achieve exact connection between layers, in 

the case of the three-dimensional beam element [1], 

additional equations 
A

zj

A

zi ,, rr   and 
B

zj

B

zi ,, rr   must be 

included, while in the case of composite created with fully 

parameterized plate elements [3], the position and gradient 

vectors for x, y and z must be equated at four boundary 

corners. It should be pointed out, that the number of 

additional constraint equations is equal to the number of the 

single element coordinates. Thus, the multi-layer element 

and the single element have the same number of degrees of 

freedom. 

Then the multi-layer elements must be assembled to 

create the flexible body. Figure 2 shows two possible 

element arrangements for the beam elements, however the 

similar approach might be used with the plate elements. 

The connection type 1, shown in Fig. 2a, consider a multi-

layer elements as a separate components that are then 

connected by assembly conditions (which are usually 

placed in the middle of elements) and the standard 
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boundary conditions are added at body interfaces. In this 

assembly type, the nodal points are not directly connected. 

It is worth noting that the connection type 1 results in the 

kinematic description that corresponds to the usage of the 

multi-layer material model [4]. However, in case of the 

composite laminated bodies depicted in Fig. 2, each 

element might use any available material model. On the 

contrary, the connection type 2 shown in Fig. 2b, connects 

with the layer connectivity conditions element layers that 

follow the standard assembly procedure (with shared 

nodes). Despite that both connection types result in the 

same number of degrees of freedom as the single layer 

body, they kinematic descriptions are not equivalent. This 

is due the fact that the adjacent elements in longitudinal 

direction are connected at different points. This results, for 

example, in significant differences in results of the linear 

modal analysis.  

 

 

Fig. 2. Composite laminated body, a) connection type 1, b) 

connection type 2 

 

In addition, in the case of the connection type 2, the 

layer connectivity and boundary conditions at the body 

boundary (points that are marked with hollow circles in 

Fig. 2b) must be selected with care to avoid singularities. 

However, the connection type 2 allows for a reduction of 

the continuity order between layers. The connection type 1 

is much more sensitive on such modifications, but in either 

case this reduction must be made with the great attention. 

The reduction of the continuity order might be beneficial in 

case of using the material models that requires the reduced 

integration, like in the case of the incompressible material 

models [5], where the application of high order continuity 

between layers (higher then 
0C ) causes serious numerical 

issues. 

 

3. Numerical results 

Presented approach was tested with several numerical 

examples of modal, static and dynamic analysis and the 

good agreement with the reference results was observed.  

In case of properly applied connection type 1, the results 

agree very well with single layer models, when the uniform 

material model is used across the layer in the multi-layer 

body. In addition, the comparison with the composite 

material model [4] provides appropriate outcomes. 

Moreover, the correct application of the connection type 2 

with reduced layer continuity produces an acceptable 

solutions, as can be seen in Fig. 3. However, in this case 

one should pay special attention in order to create a reliable 

model and a more detailed analysis is advised. 

 

 

Fig. 3. Results of the static tests of the clamped-free beam 

under gravitational force with type 2 connection, 
0C  

continuity and Neo-Hookean material model. BE24 – 

standard spatial ANCF beam element with 24 coordinates, 

SRI – selective reduced integration, F-bar – strain 

projection with so-called F-bar method [5]. It can be 

noticed that for more than 2 layers the results converge to 

proper solution 

 

4. Conclusions 

In current paper the multi-layer flexible structures build 

with ANCF elements are proposed and examined. As result 

two types of linear layer connectivity conditions are shown 

and applied to simple test examples. 

1) Application of linear constraints allow for reduction of 

the number of system degrees of freedom allowing for 

reasonably efficient computations. 

2) Connection type 1 is universal and can be applied to 

variety of locking free formulations. 

3) Connection type 2 can be beneficial in some special 

applications, but a superior attention is required when 

this approach is used. 
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