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ABSTRACT: The aim of the performed research was to check the possibility of employing the tools used in the analysis of the stability 

of motion of solids for the analysis of the dynamic stability of thin-walled square plates subjected to in-plane compressive periodic harmonic 

load and find the range of its chaotic behaviour. Using Hamilton's principle, differential equations of motion describing the plate deflection 

in time with the assumption of a two-parameter deflection function were derived. The Runge-Kutta method was used to solve them. The 

obtained time courses of plate deflections allowed us to determine maximal deflection, phase portraits, Poincare maps and Lapunov exponents, 

and on their basis to determine areas of unstable and chaotic behaviour. The obtained results were compared with the results from FEM. The 

determined range of chaotic behaviour was compared with the areas determined on the basis of the dynamic buckling criteria given by Volmir 

or Budianski-Hutchinson. The comparison of the results showed the advantages of the methods used in the dynamics of motion and the need 

for a different view of static and dynamic behaviour at impulse loads of finite duration and harmonics of infinite duration. 
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1. Introduction 

The analysis of the stability of motion and the dynamic 

buckling were separately very widely investigated and 

published in world-wise literature. Nevertheless, in world-

wise literature, there are only a few papers (e.g. [1-4]) 

dealing with investigations of dynamic buckling of plates or 

plate structures subjected to pulse loading, where were used 

one or more methods well known for the stability of motion 

(e.g.: phase portraits, Poincare maps, FFT analysis and the 

largest Lyapunov exponents). Their authors analysed the 

transition from harmonic to chaotic vibration based 

on analysis of parametric vibration of flexible squared plates 

[1], checked the influence of damping on the behaviour 

of rectangular plates subjected to in-plane compression [2], 

analysed dynamic buckling of the plates under thermal and 

mechanical pulse [3], or determined critical pulse loading for 

columns with intermediate stiffeners [4].  

The deep literature overview, which is only very shortly 

presented above allows summing up that there is still an area 

for dynamic buckling investigations employing well-known 

methods used in dynamic response and stability of motion 

analysis.  

The Authors decided to check the suitability of methods 

used in stability of motions of rigid-body analysis and 

investigate the behaviour of thin steel square plates 

determining its stable, non-stable or chaotic behaviour and 

estimate the load leading to dynamic buckling.  

 

2. Object of analysis and methods of solution 

The thin square plate (a = b = 100 mm, h = 1 mm) made 

of steel (E = 200 GPa,  = 0.3 and  = 7850 kg/m3), which 

is simply supported on all edges (Fig. 1) and loaded by 

harmonic load Fx(t) = F0 + FA cos(t) have been considered.  

 

 

Fig. 1. Considered plate with assumed coordinate system, 

dimensions, and load 

 

Analytical-numerical method and FEM were employed 

to solve the problem.  

In the analytical-numerical method, the classical plate 

theory has been considered. The differential equations 

of  equilibrium of square plate obtained from Hamilton’s 

principle were used to derive differential equations 

of motion, where the following plate deflection function was 

assumed: 
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The two cases of deflection function were considered, 

where the number of half-waves m in eq. (1) was set as 2 or 

3. The determined set of equations of motion describing the 

deflection of the plate subjected to periodic harmonic load 

are presented as Eqs. (2) and (3), in accordance with the 

assumed deflection function with m= 2 and 3, respectively. 
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where:  is nondimensional amplitude deflection normalised 

by plate thickness, i10 – natural plate frequencies 

corresponding to i = 1,2 or 3 half-waves in longitudinal 

direction px = Fx(t), pcri – static buckling load with i = 1,2 or 

3 half-waves in longitudinal direction, 𝑎1 = 𝑏1 =
3

8
𝜇, 𝑎2 =
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33800
𝜇, 𝑎3 =

71271

211250
𝜇, 𝑎4 =
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𝜇, 𝑏2 =

3

2
𝑏1, 𝑏3 =
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𝜇, 
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3

400
𝜇, 𝑏5 =
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5000
𝜇, 𝑏6 = 82𝑏4 and 𝑎1 = 𝜇 = (1 − 𝜈2). 

The equation of motion (2) and (3) was solved by the 

Runge-Kutta method. In each case, the integration has been 

performed for 100 periods of excitation with zero initial 

conditions (for t = 0 =0 and ,t=0). 

The FEM model have been prepared in ANSYS software. 

The 400 shell elements have been used. The deflection 

in time of initially imperfected plate was found by 

performing geometrical nonlinear transient analysis taking 

full mass and stiffness matrices. The plate behaviour was 

tracked in time equal to 100 excitation periods.  

 

3. Results and remarks 

In the analytical-numerical method, at the very 

beginning, the deflection function was considered for cases 

when 1 and 3 half-waves can exist in the longitudinal 

direction (Eq. (3)).  

 

 

Fig. 2. Plate deflection in centre point for different load 

cases k1 = F0/Fcr and k2 = FA/Fcr 

 

It is well known, that in the case of static load one half-

wave in a compressed square plate appears due to buckling, 

and adding the second term of the deflection equation (c.f. 

Eq. (3)) for m = 3 improves the solution and brings it closer 

to the real behaviour for loads greater than the critical loads. 

Nevertheless, the first solutions have shown that such an 

assumption is wrong. The map in Fig. 2 presents possible 

behaviour (stable - blue area) in comparison to the FEM 

solution (Fig. 3) for load defined as k1 = F0/Fcr = 0.36 and  

k2 = FA/Fcr = 1.5 gives different results. FEM results show 

chaotic behaviour with highest nondimensional deflection 

close to 2. 

 

 

Fig. 3. ANSYS solution nondimensional deflection at 

centre point (axis Y) vs. time [s] (axis X) 

 

The analysis of in-time plate behaviour has shown that 

two half-waves appear, which indicates that in the case 

of dynamic load the other behaviour could be expected. The 

solution becomes better if the deflection function in form 

as in Eq. 2 was assumed, then analytical-numerical results 

are closer to those from FEM (see. Fig.4). 

 

 

Fig. 4. Nondimensional deflection vs. DLF = (F0+FA)/Fcr 
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