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ABSTRACT: We consider two problems: a contact problem within the linear theory of elasticity with an unknown contact zone and a 
penetration problem within the elastoplastic theory with a variable contact zone. We solve the problem of imperfect contact of an elastic body 
and a thin body, which is the coating of the other elastic body. Based on the domain decomposition method and FEM for massive and thin-
walled objects, numerical results were obtained that confirm the effectiveness of the proposed approach. We present a novel computational 
framework for simulating the intricate process of screw drilling into wood. By combining cutting-edge FEM techniques, innovative modeling 
strategies and advanced software functionalities, this research offers a valuable tool for optimizing industrial processes. 
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1. Numerical Analysis of Contact Problem 

We assume that on the interface between the elastic body 

1  and the thin coating 2  of the body 3  the conditions 

of unilateral frictionless contact through a nonlinear Winkler 

layer are imposed, whereas on the interface between the body 

3  and its coating 2  the conditions of bilateral contact 

through the other nonlinear Winkler layer are satisfied (Fig. 

1). Suppose that the boundaries   =  , 1,2,3 = , of all 

bodies are Lipschitz. In 2
R , we introduce a Cartesian 

coordinate system 1 2,x x .  

 
Fig. 1 Contact of the bodies in the presence of a coating and 

Winkler layers. 

At a point 1 2( , )x x=x
• , the stress-strain state of each 

massive body  , 1,3 = , is determined by the 

displacement vector ( ) ( )i iu =u x x e , the strain tensor 

( ) ( )ij i j = x x e e , and the stress tensor 

( ) ( )ij i j = x x e e  whose components satisfy the 

following equations of the classical theory of elasticity under 

the conditions of plane deformation: 
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where 1, 0,ij i j i j = =  { } { }  is the Kronecker symbol 

and ( ) x , ( ) x  are Lamé parameters. 

To describe the stress-strain state of the coating 2 , we 

use the equations of Tymoshenko-type shell theory. For this 

purpose, in the thin body 2 , we introduce a local 

curvilinear coordinate system 1 , 2 , 3  related to its middle 

surface 2
 . Assume that the coating 2  is a cylindrical 

shell infinite in the direction 2 . 

By 21v , 2w , and 
21  we denote the tangential 

displacement, the normal displacement, and the angle of 

rotation, respectively. Further, we denote the strains by 211

, 213 , and 211 . The forces and moment in the shell are 

denoted by 211T , 213T , and 211M , respectively. Suppose 

that on the boundaries of the massive bodies we impose 

kinematic or static boundary conditions. Assume that 

12 1S    is the possible contact zone between the body 1  

and the coating 2 , and that 21 2S    is the possible 

contact zone between the coating 2  and the body 1 . On 

the boundaries 12S  and 21S  we impose the conditions of 

unilateral contact through the nonlinear Winkler layer. 

We have shown that the original contact problem is 

equivalent in weak sense to the problem of minimization of 

the nonquadratic functional 
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in the space 0V  and, in addition, the minimization problem 

(4) is equivalent to the nonlinear variational equation 

( , ) ( , ) ( , ) ( ) 0F A J L    = + − =u u u u u u u , 0V u , 0Vu  (5) 

Thus, the solution of the original contact problem is reduced 

to the solution of the nonlinear variational equation (5) in the 

space 0V . We consider closed subspaces 

0 { : 0 on }uV V    =  = u u , 1,2,3 = , of these spaces 

and consider a reflexive Banach space 
0 0 0 0

0 1 2 3 1 2 3( , , ) : , 1, 2,3V V V V V=   = =  =u u u u u
•

  { }  as the 

direct product of the spaces 0V , 1,2,3 = . To solve the 

nonlinear variational equation (5) of the contact problem, we 

use the following implicit nonstationary iterative method [1]: 

1( , ) ( , ) ( , ) ( , ) ( )k k k k k k kG G A J L+      = − + − u u u u u u u u u   

 0V u , 0,1,k = . 

We had also performed software implementation of the 

domain decomposition algorithm using the FEM to solve the 

elasticity problems in massive bodies and the one-dimen-

sional FEM with bubble basis functions of high order to 

solve the problem of the Tymoshenko-type shell theory. 
The proposed method was used for the numerical inves-

tigation of the problem of contact interaction between two 

elastic bodies with surface groove in the presence of a thin 

elastic coating and the nonlinear Winkler layers. We had 

performed the comparison of the numerical solutions ob-

tained by the domain decomposition algorithm based on the 

use of the Tymoshenko-type shell theory to model the stress-

strain state of the thin coating with the solutions obtained by 

the DDM in which the classical elasticity theory was used to 

model the coating. 

The solutions of the problems with an unknown contact 
zone and penetration problems are more important nowadays 

than ever. 

 

2. Finite element simulation of screw drilling into wood 

The calculation and analysis of torque and the local 

stress-strain state in wood material is crucial for optimizing 
screw design and improving industrial processes [2, 3]. 

We propose a unique approach to simulate the screw 

drilling process by sequentially generating 'screw drilling 

frames’. Each of such frames represents the wood material at 

certain screw penetration level. As screw drilling progresses, 

a larger contact area between the wood and the screw is deve-

loped. The seamless transition between frames involves set-

ting prescribed horizontal displacements and transferring 

stresses and residual plastic strain to the subsequent frame as 

initial conditions in FEM simulation. 

One half of the model is considered for each screw drilling 

frame due to the symmetry conditions. The finite element 
mesh and the boundary conditions of a screw drilling frame 

are illustrated in the figure 1. 

A dynamic meshing using 2D quadratic triangle elements 

is adopted to discretize the wood medium precisely, 

constantly adapting the mesh and boundary conditions at 

each penetration level to capture the nuances of the 

interaction. 

Referring the figure 2, the boundary conditions are defined 

as following:  

– the symmetry boundary conditions 𝑑𝑥 = 0 on edge AE; 

– the prescribed horizontal displacements 𝑑𝑥  on 

boundary edges from A to B (i.e., the contact between 

screw surface and wood); 

– fixed boundary conditions 𝑑𝑥 = 0, 𝑑𝑦 = 0 on edges 

BC, CD and DE. 

 

Fig. 2. Finite element mesh and the geometry of the screw 

drilling frame 

 

In present study the wood material is modelled as elasto-

plastic orthotropic according to the Von Mises yield crite-

rion. Using the principle of virtual work, the stress-strain 

state in the screw frame Ω ⊂ 𝑅2 can be described as [4]:  

 ∫ 𝛿𝜺𝑇𝝈 𝑑Ω 
 

Ω
−  ∫ 𝛿𝒅𝑇𝒇𝒎 𝑑Ω − ∫ 𝛿𝒅𝑇𝒇𝒉 𝑑Γ 

 

Γ
= 0 

 

Ω
 (6) 

where Γ is a boundary of Ω,  𝒇𝒎 – mass forces, 𝒇𝒉 – surface 

forces, 𝒅, 𝜺, 𝝈 – displacements, strains and stresses, 

respectively. 

The nonlinear equilibrium equation (6) is further solved 

for each screw frame (see figure 2) by means of Newton-

Raphson iterations [4], resulting in torque at corresponding 

screw penetration level. The torque is calculated using the 

stresses at nodes on frame edge AB (figure 2) as output of 

FEM simulation.   

 

Fig. 3. The calculated torque per screw penetration level 

 

The developed software has been successfully tested by 

engineers to calculate the resultant torque that was well 
agreed with experiments and valuable in making decisions 

on the screw geometry optimization. The present study 

yielded qualitative results comparable to those observed in 

real experiments. 
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